A complete genetic analysis of neuronal Rab3 function.
نویسندگان
چکیده
Rab3A, Rab3B, Rab3C, and Rab3D are closely related GTP-binding proteins of synaptic vesicles that may function in neurotransmitter release. We have produced knock-out (KO) mice for Rab3B and Rab3C and crossed them with previously generated Rab3A and 3D knock-out mice to generate double, triple, and quadruple Rab3 knock-out mice. We have found that all single and double Rab3 knock-out mice are viable and fertile. Most triple Rab3 knock-out mice perish whenever Rab3A is one of the three deleted proteins, whereas all triple knock-out mice that express Rab3A are viable and fertile. Finally, all quadruple knock-out mice die shortly after birth. Quadruple Rab3 KO mice initially develop normally and are born alive but succumb to respiratory failure. Rab3-deficient mice display no apparent changes in synapse structure or brain composition except for a loss of rabphilin, a Rab3-binding protein. Analysis of cultured hippocampal neurons from quadruple knock-out mice uncovered no significant change in spontaneous or sucrose-evoked release but an approximately 30% decrease in evoked responses. This decrease was caused by a decline in the synaptic and the vesicular release probabilities, suggesting that Rab3 proteins are essential for the normal regulation of Ca2+-triggered synaptic vesicle exocytosis but not for synaptic vesicle exocytosis as such. Our data show that Rab3 is required for survival in mice and that the four Rab3 proteins are functionally redundant in this role. Furthermore, our data demonstrate that Rab3 is not in itself essential for synaptic membrane traffic but functions to modulate the basic release machinery.
منابع مشابه
Rab3 superprimes synaptic vesicles for release: implications for short-term synaptic plasticity.
Presynaptic vesicle trafficking and priming are important steps in regulating synaptic transmission and plasticity. The four closely related small GTP-binding proteins Rab3A, Rab3B, Rab3C, and Rab3D are believed to be important for these steps. In mice, the complete absence of all Rab3s leads to perinatal lethality accompanied by a 30% reduction of probability of Ca2+-triggered synaptic release...
متن کاملMutational Analysis of Rab3 Function for Controlling Active Zone Protein Composition at the Drosophila Neuromuscular Junction
At synapses, the release of neurotransmitter is regulated by molecular machinery that aggregates at specialized presynaptic release sites termed active zones. The complement of active zone proteins at each site is a determinant of release efficacy and can be remodeled to alter synapse function. The small GTPase Rab3 was previously identified as playing a novel role that controls the distributio...
متن کاملRab3-GAP Controls the Progression of Synaptic Homeostasis at a Late Stage of Vesicle Release
Homeostatic signaling systems stabilize neural function through the modulation of neurotransmitter receptor abundance, ion channel density, and presynaptic neurotransmitter release. Molecular mechanisms that drive these changes are being unveiled. In theory, molecular mechanisms may also exist to oppose the induction or expression of homeostatic plasticity, but these mechanisms have yet to be e...
متن کاملIdentification and characterization of Drosophila genes for synaptic vesicle proteins.
Proteins associated with synaptic vesicles are likely to control the release of neurotransmitter. Because synaptic transmission is fundamentally similar between vertebrates and invertebrates, vesicle proteins from vertebrates that are important for synaptic transmission should be present in Drosophila as well. This investigation describes Drosophila homologs of vamp, synaptotagmin, and rab3 tha...
متن کاملA rab3 homolog in sea urchin functions in cell division.
Rabs are monomeric GTP binding proteins belonging to the ras superfamily that function throughout the secretory pathway. Members of the rab3 family function in the final steps of the secretory pathway, vesicle fusion with the plasma membrane. In contrast to mammalian systems with several rab3 isoforms (rab3A-D), a single family member homologue of rab3 is present in the rapidly dividing cleavag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 29 شماره
صفحات -
تاریخ انتشار 2004